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Abstract-This paper documents the conjugate heat transfer through a wall with nonuniform thickness, 
which is lined on one side by a boundary layer. In the first part, variational calculus shows that the total 
heat transfer rate is rnin~rniz~ P hen the wall thickness decreases in an optimal manner in the direction of 
flow. The reductions in total her .t transfer rate are significant when the Riot number is smalier than I. In 
the second part of the study, thz complete problem of a laminar forced convection boundary layer coupled 
with conduction through a va~i~~ble-thickens wail is solved numeri~liy. Means for calculating the total 
heat transfer rate are reported graphically. It was again found that the total heat transfer rate decreases 

when the wall profile is t:.pered so that the wall thickness decreases in the dir&ion of flow. 

THE PROBLEM 

AN ~MPORTA~ characte~stic of man:’ conv~t~on heat 
transfer configurations is that the heat transfer 
coefficient varies substantially in the flow direction x. 
For example, in a for~d-convection laminar bound- 
ary layer over a flat wall h decreases as x-‘I’, while in 
a natural-convection laminar boimdary layer h 
decreases as x- ‘I4 When the wall thitt is swept by the . 
convective flow has a finite thickness and thermal 
conductivity, its thermal resistance is added to the 
resistance of the boundary layer. Intuitively, it seems 
that a larger wall thickness will have its greatest insu- 
lation effect in that wall section over which the con- 
vection heat transfer coefIicient is large. 

Consider the wall with variabh thickness S(x) 
shown in Fig. 1. On one side of r1.e wall, the heat 
transfer coefficient is large enough 30 that the tem- 
perature of that surface is uniforn, To. The other 
side is exposed to a flow of different temperature 
(TO -f-AT), across a heat transfer coefficient whose 
variation along the wall is known h(x). The wall 
length L is also specified. 

The local heat flux driven by the overall constant 
temperature difference AT is 

9’ = s L ATdx 
-. 
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(2) 

Of interest is the optimal wall thickness distribution 
6(x) for which the heat transfer integral g’ is minimum, 
while the volume of wall material is fixed. The volume 
(per unit length) constraint can be written as 

L 

s 
6 dx = 6L (constant) (3) 

0 

in which 8’ (fixed) is the L-averaged thickness of the 
wall. 

SOLUTION BY VARIATIONAL CALCULUS 

The minimization of the integral (2) subject to the 
integral constraint (3) is equivalent to the minimiz- 
ation of the aggregate integral 

Q= -$$J -t As(x) Fdx (4) 
?I+?-- 

w 

subject to no constraints (see, for example, Bejan [I]). 
The factor I in the integrand is a Lagrange multiplier. 
The optimal thickness can be determined by solving 
the Euler equation 

By integrating this over the entire length L we obtain (9 
the total heat transfer rate q’, expressed per unit length 
in the direction perpendicular to the plane of Fig. 1 in which F is shorthand for the integrand of the @ 
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NOMENCLATURE 

h dimensionless taper parameter. c’ I free stream velocity 
equation (27) .Y downstream coordinate, Fig. 1 

Bi Biot number, equation (12), Sh,,/k, .c. distance to region of zero thickness, Fig. 4 
.f function provided by Rlasius’ solution, j’ transversal coordinate, Fig. 1. 

fll) 
F integrand of integral (4) Greek symbols 
hf.\-) heat transfer coefficient &(_Y) wall thickness 
k,. value of h at .Y = L s L-averaged wall thickness, equation (3) 
J dimensionless group, equation (25) )I similarity variable, equation (22) 
J physical constraint group, equation (29) 0 dimens~ouless fluid temperature, 
k fluid thermal conductivity equation (22) 
k,V wall thermal conductivity i Lagrange multiplier 
L wall length 1’ kinematic viscosity 
n exponent, equation (9) r dimensionless coordinate, X/L 

Nu, local Nusselt number, equation (31) r dimensionless distance, .x$L 
Pf” Prandtl number 1;;’ aggregate integral (4). 

YZ total heat transfer rate per unit length, 
equation (2) Subscripts 

Yf’ local heat flux C property of wall with constant thickness, 
Rr I Reynolds number, li.,.riv ti = n’ 

7-* reference temperature max maximum 
AT temperature difference (constant) min minimum 
u longitudinal velocity component OPl optimal. 

-. _. 

integral (4). In this problem, equation (5) reduces to 
?F/&i = 0, and the resulting expression for the opti- 
mal thickness is 

The Lagrange multiplier is evaluated by sub- 
stituting (6) into the volume constraint (3) 

so that, in the end, the optimal distribution of wall 

h = hL < ‘I, where f = z. (9) 

thickness reads For example, the exponent n is 112 in laminar forced 

RESULTS 

In order to see how the use of the optimal thickness 
has the effect of decreasing the overall heat transfer 
rate per unit length q’, let us assume that the x-depen- 
dence of h is of the boundary layer type 

Flow 
-u, 

TO -+ AT 

FIG. 1. Wall with variable thickness and convection on one side. 
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convection and l/4 in laminar natural convection. 
The h, factor is the lowest value of the heat transfer 
coefficient h, namely the value at the downstream end 
x = L. 

If we now combine equations (8) and (9), and sub- 
stitute the result in the q’ integral (2), we obtain the 
optimal thickness 

1.2 - 

II = li2 
,.----\. 

/’ “\ 
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(10) 

and, cf. equation (2), the minimum heat transfer rate 

h,LAT 
4h = ~j+(l+~j-l‘ (11) 

0 = 114 

__-- 
__-- --_ 

*. 

1.0 7 
0.01 0.1 I I 

Bi 
The Biot number Bi is based on h, and the L-averaged 
wall thickness 

Bi=!$. (12) 

The physical fact that S,,,/s > 0 places a constraint 
on the Biot number range in which the solution (10) 
is valid 

Bi> ln-&. (13) 

The most stringent constraint of this type corresponds 
to 5 = 1 (or x = L) ; therefore the allowable Bi range 
is 

Bi>&. (14) 

It is worth noting that when Bi = n/(n + 1) the optimal 
thickness drops to zero at the downstream end of the 
wall, x = L. 

The minimum heat transfer rate can be compared 
with the heat transfer rate through a constant-thick- 
ness wall that has the same volume, cf. equation (2) 

ATdx 
4: = = h,LAT 

f 

’ dt 
1 s 

~ (15) 
O t”+Bi’ 

h,t-” + k, 

The relative merit of the variable-thickness design is 
indicated by the ratio 

which clearly approaches 1 when the x-dependence of 
h fades away (n -+ 0). This ratio (equation (16)) has 
been calculated and plotted in Fig. 2 (the solid curves) 
as a function of n and Bi. Each curve is terminated by 
a circle at the lowest Bi value allowed by criterion (14). 
An example of optimal wall thickness distribution 
(equation (10)) is presented in Fig. 3. 

This solution has been extended to Biot numbers 
lower than the threshold (equation (14)) by con- 
sidering a wall whose inventory of material is dis- 
tributed only over the upstream portion of length x, 
(Fig. 4). The downstream portion (L-x,) is backed 

) 

FIG. 2. The total heat transfer rate through the constant- 
thickness wall, divided by the heat transfer rate through the 

corresponding wall with optimal thickness. 

by a wall of zero thickness. The analysis contained 
between equations (2) and (10) can be repeated while 
holding x, constant (in place of L). The resulting 
expression for the optimal thickness subject to the 
volume constraint (3) is 

(17) 

in which 5, = x,/L and, as before, 5 = x/L. Two 
examples of this optimal-thickness function are given 
in Fig. 5. By setting a,,, = 0 at x = x,, we obtain the 
relationship between 5, and Bi 

(18) 

This equation shows that 5, decreases monotonically 
as Bi decreases, i.e. that the fixed volume of wall 
material is positioned closer to the leading edge of 
the boundary layer as Bi becomes small. Also worth 
noting is that equation (18) agrees with the inequality 
(14) when 5, = 1, and that the geometric range 
0 < x, < L of Fig. 4 corresponds to Bi < n/(n + 1). 

The total heat transfer rate through the wall of Fig. 
4 is easily evaluated using equation (2) with the &r, 

z- 
n = l/2. Bi = 1 

zK_ 
L 

FIG. 3. The optimal variation of wall thickness according to 
equation (10). 
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Flow 
- uca 

T,, + AT 

FIG. 4. Wall with variable thickness over the leading section (O-I,), and zero thickness over the trailing 

section (x, - L). 

THE POHLHAUSEN PROBLEM FOR A WALL 

WITH VARIABLE THICKNESS 

The preceding conclusions were made possible by 
the simplification adopted in equation (9), in which 
the x-dependence of the heat transfer coefficient was 
assumed to be known. In reality, both the heat transfer 
coefficient and the fluid-side temperature of the wall 

are consequences of the interaction between con- 

X 
0.5 vection in the fluid and conduction in the wall. In this 

I- section we discard equation (9), and focus instead 

FIG. 5. The optimal variation of wall thickness according to on the conjugate convection-conduction heat transfer 

equation (17). across the temperature difference AT maintained 
between the free stream and the underside of the wall 
(Fig. 1). 

expression (17) from x = 0 to x = x,, and with fi = 0 In terms of the usual laminar boundary layer 
from x = x, to .Y = L notation, the heat transfer in the fluid is governed 

by the energy equation (see, for example, Kays and 

(I 9) Crawford [2], and Bejan [3]) 

The dimensionless figure of merit constructed in equa- 

tion (16) assumes the new form where ( )’ = d( )/dq, and 

B”fJPr,fO’ = 0 (21) 

for which the function 4,(B) is provided implicitly The function f(a) is known from the Blasius solution 

by equation (18). This dimensionless ratio has been for the velocity boundary layer, u/U, =f’(q). The 

plotted with a dashed line in Fig. 2, showing that it Reynolds number is defined as Re, = iJ,x/v. 

reaches a maximum (qki, reaches a minimum) at a The two boundary conditions on O(a) are 

certain Biot number that depends on the exponent O=l 
II assumed in equation (9). This feature is detailed 

as q-m(y+co) (23) 

numerically in Table 1. a0 
O=J-- at q=o (y-0) 

arl 

Table I. The location of the maximum of the ratio q’/qi,,;. where J is a dimensionless function of x (note also 
reported in Fig. 2 that in general 6 = S(X)) 

I1 

114 
113 
112 

Bi,,, 
I__.~.____. 

0.066 
0.065 
0.045 

M/%,“L 

1.047 
1.077 
1.155 

cl51 

The boundary condition of equation (24) accounts for 
the continuity of heat flux through the y = 0 surface. 
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i.e. for the connection between convection above and 
conduction below this surface 

k .?-To ---=kg aty=O. w 6 (26) 

The limiting case of a wall with zero thickness, 
J = 0, is the same as Pohlhausen’s [4] problem for 
heat transfer from an isothermal flat plate to a lami- 
nar boundary layer. The problem constructed here 
between equations (21) and (25) is a generalization to 
a wall with arbitrary thickness. In search of the opti- 
mal wall thickness function that minimizes the overall 
heat transfer rate per unit length q’, we were unable 
to carry out the variational calculus using equations 
(21)-(25) in place of equation (9). Instead, we assumed 
a wall thickness shape that agrees qualitatively with 
the shape illustrated in Fig. 3 

5 
x= 1+b($-g) (27) 

and then conducted a search for the minimum q’. In 
equation (27), b is a dimensionless wall taper par- 
ameter so that the thickness S(g) decreases linearly 
from (I +b/2) at the leading edge, to (1 -b/2) at 
x = L. Substituted in the fdefinition (25), the tapered 
shape (27) yields 

in which .?is a dimensionless constant 

The 7 constant accounts for the fixed length and 
material inventory of the wall (L, &, as a substitute 
for the constraint of equation (3) used in the first part 
of this study. 

The total heat transfer rate 

q’ = so Lk ET dx 
0 ay f=. 

(30) 

was determined numerically, by solving equations 
(21~(24) for a fixed pair (Pr,J). To start with, the 
Blasius function f(tl) was determined based on the 
one-time shooting method (Goldstein [5], Rosenhead 
[6], Van Dyke [7] ; see also Bejan [3], pp. 61-62). Equa- 
tion (21) was solved next by the centred finite differ- 
ence method with second order accuracy. The uniform 
step Aq = 0.01 was chosen based on the information 
presented in Fig. 6, in which the local Nusselt number 

Ng 
x 
3!z=x dT 

k AT 0 ay y=o 
(31) 

0.33 

& 

Re:12 
0.32 

0.30-I 
0.8 0.9 

Pr 

FIG. 6. The effect of grid size on the accuracy of the numerical 
solution (J = 0). 

that the A? = 0.01 curve cannot be distinguished from 
the A? = 0.001 curve, i.e. that the An = 0.01 grid is 
already fine enough. 

The heat transfer results are reported in relative 
terms in Figs. 7 and 8. On the ordinate, the numerator 

0 1 

b 

2 

FIG. 7. The effect of the taper parameter b on the heat transfer 
rate through a laminar boundary layer adjacent to a wall of 

variable thickness, equation (27). 

1.10 

G qt 1.05 

1.04 
0 1 2 3 4 5 

5 
was compared with Pohlhausen’s asymptote for the Fm. 8. The effect of the physical constraint parameter Jon 

Pr >> 1 limit, Nu, = 0.332 Pr’13 Re:“. Figure 6 shows 
the total heat transfer rate through a laminar boundary layer 

adjacent to a wall of variable thickness, equation (27). 
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Table 2. The iocation of the maximum of the ratio y:,$’ 
reported in Fig. 8 (Pr = I) 

b J,.,\ (4::&., I) 
_____~ -..__..__-.-- ._ .” _ - 

0.5 Il.88 I.028 
1.0 0.76 1.050 
I.5 0.58 1.068 
2.0 0.50 1.083 

g: represents the total heat transfer rate (per unit 
length) when the wall thickness is constant (6 = 5 or 
6 = 0). The denominator 4’ is the heat transfer rate 
(per unit length) through the wall with variable thick- 
ness, 0 < h < 2. Note that when b = 2 the wall thick- 
ness is zero at the trailing edge (.Y = L). 

Figure 7 shows that the ratio qL/q’ increases steadily 
as the taper parameter h increases. This finding con- 
firms the trend discovered in Fig. 2 (the solid lines), 
in which the taper becomes more pronounced as f?i 
decreases. The magnitude of the q:/q’ ratio is com- 
parable with the values plotted in Fig. 2. 

The effect of changing the physical constraint par- 
ameter his illustrated in Fig. 8. We see here that when 

the taper is fixed (for example, triangular wall profile, 
h = 2) the insulation effect reaches a maximum at a 
certain d value of order 1. The numerical details of 
the maxima of Fig. 8 are listed in Table 2. At the 
maximum (where j of equation (29) is a certain con- 
stant, j,,,,,,), the average wall thickness ?? is pro- 
portional to L” ‘. 

The actual heat transfer rate q’ can be estimated by 
combining the relative information of Figs. 7 and 8 
with the yi data plotted in Fig. 9. The latter is the final 
chart for the total heat transfer rate through a wall of 
constant thickness in contact with a forced convection 
laminar boundary layer. The chart shows how the .7 
constant differentiates between situations in which the 
overall thermal resistance is dominated by the wall 
(J?> I), and situations where the boundary layer has 
the greater of the two thermal resistances (J<c I). 

I 

qic 
k,LATI 8 

0.1 

ox )l 0.1 1 IO 1 

s 

FIG. 9. The total heat transfer rate through a wall of constant 
thickness, lined by a forced convection taminar boundary 

layer. 

By using equation (29) and the classical Pohlhausen 
solution, it is easy to verify that the asyi~ptotes of 
each of the curves plotted in Fig. 9 are 

YL 

i 

I. if.?>> I 
‘.‘-- ‘-“_= 

k, L.ATjJ 0.664 Pr’ ‘J if 7 cc I, and PI 2 0.5. 

(32) 

In this paper we analyzed the conjugate heat trans- 
fer through a variable-thickness wall lined by a con- 
vective boundary layer. In the first part, the analysis 
was simplified by the assumption that the s-depen- 
dence of the wall-fluid heat transfer coefficient is 
known. Variational calculus showed that the total 
heat transfer rate is minimized when the wall thickness 
decreases in an optimal manner in the direction of 
flow. 

In the second part of the paper, the complete prob- 
lem of taminar boundary layer convection coupled 
with wall conduction was solved numerically. It was 
assumed that the wail thickness varies linearly with 
x: however, the taper of the wall profile (6) could 
change, The heat transfer rate decreased at larger 
values of b, i.e. as more of the wall material was shifted 
toward the leading edge. This conclusion agreed quali- 
tatively with the one reached via variational calculus. 

Finally, with reference to Fig. 2 it is important 
to recognize that the range Bi < I corresponds to a 
wall with an internal resistance smaller than that of 
the boundary layer. The figure showed that at the 
opposite end (Bi > I) the USC of a variable-thickness 
wall does not result in a signiticant reduction in the 
total heat transfer rate. in other words, when the wall 
internal resistance dominates the overall resistance 
from T,,+hT to T,. the constant-thickness wall is 
practically as good as the wall with optimal thickness 
profile. 
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EPAISSEUR OPTIMALE DUNE PAR01 AVEC CONVECTION SUR UNE FACE 

R&tn&-On considkre le transfert thermique conjugui B travers une paroi avec bpaisseut non uniforme 
et une condition limite sur une face. Dam une premiere partie, un calcul variationnel montre que le transfert 
thermique total est minimise quand l’epaisseur de la paroi d&croit d’une fagon optimale darts la direction 
de l’tcoulement. Les reductions du transfert total de chaleur sont significatives lorsque le nombre de Biot 
est inferieur a 1. Dans la seconde partie de l’ttude, le probleme complet dune couche limite de convection 
for&e laminaire coup& a la conduction B travers une paroi a tpaisseur variable est resolu numeriquement. 
On rapporte graphiquement des moyens de calcnl du flux de transfert total thermique. On trouve aussi 
que ce flux dkroit quand ie profit de la paroi est tel que l’epaisseur diminue dam la direction de l’ecoulement. 

DIE OPTIMALE DICKE EINER WAND MIT EINSEITIGER KONVEKTION 

Zusammenfassung-Die vorliegende Arbeit befaSt sich mit dem konjugierten Warmetransport durch eine 
Wand ungleichfiirmiger Dicke und einseitiger Grenzschicht. Im ersten Teil zeigt eine Variationsrechnung, 
daR der Wiirmedurchgang durch Wahl einer abnehmenden Wanddicke in Stromungsrichtung auf optimale 
Weise minimiert wird. Die Verringerung des Warmedurchgangs wird fur Biot-Zahlen kleiner als 1 si- 
gnifikant. Im zweiten Teil der Untersuchung wird das vollstandige Problem einer laminaren Grenzschicht 
bei erzwungener Konvektion in Verbindung mit der Warmeleitung durch die Wand variabler Dicke 
numerisch gel&t. Es folgt eine grafische Darstellung des Verfahrens zur Berechnung des Wlrmedurchgangs. 
Es zeigt sich wieder, daB der Warmedurchgang fiir den Fall eines sich verjilngenden Wandprofils abnimmt, 

so dal3 die Wanddicke in Str~mungsrichtung abnimmt. 

OHTHMAJIbHAI TOJiIIHiHA CTEHKM HPH HAJIWYHH KOHBEKHHM C OJJHOH 
CTOPOHbI 

Amsmraaas--Hccneayerce conpisrenubrii rennortepenoc a cnysae crerirm rreoarioponrtoL TO~~HHM c 

norpamiwibw cnoeb4 na onwoii cropone. Hpoeeneaabte B nep~oii gacrH pa6oTbl saprramiounbre 
&XWWTJ,i llOKa3bIBaH)T, 9TO pe3yJIbTHpyIomaK CKOpOcTb TeWIOnQLIeHoca MHHHMH3HpyeTCSl Qni OnTHMa- 

nbnoM yb5eHbmemin TO~WH~I crerirw B nanpaenemin re9emin. Cmiremie c~opocrn rennonepenoca 
nrumercn cyurecreemmr~, xorna arranemre mrcna Pno Memute 1. Bo BTO~OR xacrn HccnenonaHHn WC- 

nemio pemae~cr cxxibtecmax 3anaqa norpamiworo cnon np~ nahimiaprloii sbuiyx.uexiitoil Kom3exwiH w 
TennonpoBo~ocni wpe3 cremry nepebremioii ~ommmbx. Q~I$HU~CKS npe.ncraenewbl MOTOR pacwra 

~SyRbTLipyloutefi CKOpaTlr TelLROnepeHocZi. Ha&xeHo, ‘CT0 OHa CiiHXaeTCS B CJJySae KOEXycoofipa3HOrO 


