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Abstract—This paper documents the conjugate heat transfer through a wall with nonuniform thickness,
which is lined on one side by a boundary layer. In the first part, variational calculus shows that the total
heat transfer rate is minimized w hen the wall thickness decreases in an optimal manner in the direction of
flow. The reductions in total heet transfer rate are significant when the Biot number is smaller than 1. In
the second part of the study, the complete problem of a laminar forced convection boundary layer coupled
with conduction through a variable-thickness wall is solved numerically. Means for calculating the total
heat transfer rate are reported graphically. It was again found that the total heat transfer rate decreases
when the wall profile is t:pered so that the wall thickness decreases in the direction of flow.

THE PROBLEM

AN IMPORTANT characteristic of many convection heat
transfer configurations is that the heat transfer
coeflicient varies substantially in the flow direction x.
For example, in a forced-convection laminar bound-
ary layer over a flat wall & decreases as x ™7, while in
a natural-convection laminar boundary layer 4
decreases as x~ /%, When the wall that is swept by the
convective flow has a finite thicknsss and thermal
conductivity, its thermal resistance is added to the
resistance of the boundary layer. Intuitively, it seems
that a larger wall thickness will have its greatest insu-
Jation effect in that wall section over which the con-
vection heat transfer coefficient is large.

Consider the wall with variabl: thickness &(x)
shown in Fig. 1. On one side of the wall, the heat
transfer coefficient is large enough 3o that the tem-
perature of that surface is uniforr, T, The other
side is exposed to a flow of different temperature
(To+AT), across a heat transfer coefficient whose
variation along the wall is known, A(x). The wall
length L is also specified.

The local heat flux driven by the overall constant
temperature difference AT is

Qf:I 5‘ (I)

By integrating this over the entire length L we obtain
the total heat transfer rate ¢, expressed per unit length
in the direction perpendicular to the plane of Fig. 1

) L AT dx
q *J; T 5 (2)

rt,
Of interest is the optimal wall thickness distribution
6(x) for which the heat transfer integral ¢ is minimum,

while the volume of wall material is fixed. The volume
{per unit length) constraint can be written as

L
J 8dx = 6L (constant) 3
0

in which & (fixed) is the L-averaged thickness of the
wall.

SOLUTION BY VARIATIONAL CALCULUS

The minimization of the integral (2) subject to the
integral constraint (3) is equivalent to the minimiz-
ation of the aggregate integral

£ A T L
d)=j e 15 () dxzj‘ Fdx (4
ol 0 o
h k,

subject to no constraints (see, for example, Bejan [17).
The factor 4 in the integrand is a Lagrange multiplier,
The optimal thickness can be determined by solving
the Euler equation

oF_df or 7 _,
3~ dx| a@s/an | = 6)

in which F is shorthand for the integrand of the @
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NOMENCLATURE

b dimensionless taper parameter,
equation (27)

Bi Biot number, equation (12), o4, /k,,

! function provided by Blasius’ solution,
S

F integrand of integral (4)

heat transfer coefficient

hy valueof hat x = L

J dimensionless group, equation (25)

J physical constraint group, equation (29)

k fluid thermal conductivity

k., wall thermal conductivity

L wall length

n exponent, equation (9)

Nu,  local Nusselt number, equation (31)

Pr Prandtl number

g total heat transfer rate per unit length,
equation (2)

q" local heat flux

Re,  Reynolds number, U, x/v

Ty reference temperature
temperature difference {constant)
u longitudinal velocity component

U, free stream velocity
X downstream coordinate, Fig. 1
X, distance to region of zero thickness, Fig. 4

¥ transversal coordinate, Fig. 1.

Greek symbols

8(x) wall thickness

& L-averaged wall thickness, equation (3)
n similarity variable, equation (22)

0 dimensionless fluid temperature,

cquation (22)

7 Lagrange multiplier

v kinematic viscosity

& dimensionless coordinate, x/L

e dimensionless distance, x./L

¢ aggregate integral (4).

Subscripts
¢ property of wall with constant thickness,
d=26

max maximum ;

min  minimum

opt  optimal. ,
i

integral (4). In this problem, equation (5) reduces to
JF/06 = 0, and the resulting expression for the opti-
mal thickness is

5 Lk
Bupe(¥) = 47 Ak, AT P = (6)

The Lagrange multiplier is evaluated by sub-
stituting (6) into the volume constraint (3)

[

PR v s, LT ke o
iV ATY Y = 5 Lﬁ gl O

so that, in the end, the optimal distribution of wall
thickness reads

Flow
JR—— U oo

T, + AT

Ky

11" ke
5opt(x) = 5+ 2‘ J (8)

o h(x)

RESULTS

In order to see how the use of the optimal thickness
has the effect of decreasing the overall heat transfer
rate per unit length ¢’, let us assume that the x-depen-
dence of 4 is of the boundary layer type

X .
h=~h (¢, whereé = 7 (9

For example, the exponent n is 1/2 in laminar forced

FiG. 1. Wall with variable thickness and convection on one side.
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convection and 1/4 in laminar natural convection.
The A, factor is the lowest value of the heat transfer
coefficient 4, namely the value at the downstream end
x=L.

If we now combine equations (8) and (9), and sub-
stitute the result in the ¢’ integral (2), we obtain the
optimal thickness

Sopt 1{ 1 .
5 —‘+§i<m—‘f)

and, ¢f. equation (2), the minimum heat transfer rate

h LAT
Bi+(1+n)~ "

(10)

Groin = an
The Biot number Bi is based on /4, and the L-averaged
wall thickness
 hd
Bi= ‘Igw‘ .
The physical fact that 50‘,!/5 > 0 places a constraint
on the Biot number range in which the solution (10)
is valid

(12)

) —— 1
Bi>¢ arl (13)
The most stringent constraint of this type corresponds
to ¢ = 1 (or x = L); therefore the allowable Bi range

18

n

Bl/m.

Y

(14)

It is worth noting that when Bi = n/(n+ 1) the optimal
thickness drops to zero at the downstream end of the
wall, x = L.

The minimum heat transfer rate can be compared
with the heat transfer rate through a constant-thick-
ness wall that has the same volume, cf. equation (2)

L ATd !
%=I_iu=mm?[ d¢
o 1 & o

&+ Bi’
h " E\;

The relative merit of the variable-thickness design is
indicated by the ratio

. 1 'd
e —(Bit— *:*§*<
Grmin n+1/ Jo &+ Bi

which clearly approaches 1 when the x-dependence of
h fades away (n — 0). This ratio (equation (16)) has
been calculated and plotted in Fig. 2 (the solid curves)
as a function of n and Bi. Each curve is terminated by
acircle at the lowest Bi value allowed by criterion (14).
An example of optimal wall thickness distribution
(equation (10)) is presented in Fig. 3.

This solution has been extended to Biot numbers
lower than the threshold (equation (14)) by con-
sidering a wall whose inventory of material is dis-
tributed only over the upstream portion of length x,
(Fig. 4). The downstream portion (L—x,) is backed

(15)

(16)
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F1G. 2. The total heat transfer rate through the constant-
thickness wall, divided by the heat transfer rate through the
corresponding wall with optimal thickness.

by a wall of zero thickness. The analysis contained
between equations (2) and (10) can be repeated while
holding x. constant (in place of L). The resulting
expression for the optimal thickness subject to the
volume constraint (3) is

o _ 11 ( &,
5 ¢ Bi\n+1 —¢
in which ¢, = x/L and, as before, { = x/L. Two
examples of this optimal-thickness function are given
in Fig. 5. By setting d,,, = 0 at x = x,, we obtain the
relationship between &, and Bi

{an

T+n

Bi=—"
! 14+n°

(18)
This equation shows that £, decreases monotonically
as Bi decreases, i.e. that the fixed volume of wall
material is positioned closer to the leading edge of
the boundary layer as Bi becomes small. Also worth
noting is that equation (18) agrees with the inequality
(14) when £, =1, and that the geometric range
0 < x. < L of Fig. 4 corresponds to Bi < n/(n+1).
The total heat transfer rate through the wall of Fig.
4 is easily evaluated using equation (2) with the J,,

[ n=1/2, Bi=1

0.0 0.5 1.0

X
L

F1G. 3. The optimal variation of wall thickness according to
equation (10).
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FiG. 4. Wall with variable thickness over the leading section (0— x.), and zero thickness over the trailing
section (x.— L).

.5

F1G. 5. The optimal variation of wall thickness according to
equation (17).

expression (17) from x = 0 to x = x,, and with § = 0
fromx = x. tox = L

1—nél=r

min = A, LAT
qmm 1 l‘—n

(19)
The dimensionless figure of merit constructed in equa-
tion (16) assumes the new form

(20)

for which the function £.(B7) is provided implicitly
by equation (18). This dimensionless ratio has been
plotted with a dashed line in Fig. 2, showing that it
reaches a maximum (q,;, reaches a minimum) at a
certain Biot number that depends on the exponent
n assumed in equation (9). This feature is detailed
numerically in Table 1.

Table 1. The location of the maximum of the ratio ¢'/¢ ..
reported in Fig. 2

n Bi. (9¢/Grnindenax
1/4 0.066 1.047
1/3 0.065 1.077
12 0.045 1.155

THE POHLHAUSEN PROBLEM FOR A WALL
WITH VARIABLE THICKNESS

The preceding conclusions were made possible by
the simplification adopted in equation (9), in which
the x-dependence of the heat transfer coefficient was
assumed to be known. In reality, both the heat transfer
coeflicient and the fluid-side temperature of the wall
are consequences of the interaction between con-
vection in the fluid and conduction in the wall. In this
section we discard equation (9), and focus instead
on the conjugate convection-conduction heat transfer
across the temperature difference AT maintained
between the free stream and the underside of the wall
(Fig. 1).

In terms of the usual laminar boundary layer
notation, the heat transfer in the fluid is governed
by the energy equation (see, for example, Kays and
Crawford [2], and Bejan [3)])

0"+ 1Prf0 =0 @b
where () = d( )/dn, and
T-T, Yoo iz :
() = AT "TTY Rey”. (22)

The function f(n) is known from the Blasius solution
for the velocity boundary layer, u/U, = f'(y). The
Reynolds number is defined as Re, = U, x/v.

The two boundary conditions on 0(n) are

0=1 as y— ow(y— o) (23)

9=Ji£? at

pw (24)

n=0 (y—0)

where J is a dimensionless function of x (note also
that in general 6 = §(x))

(25)

The boundary condition of equation (24) accounts for
the continuity of heat flux through the y = 0 surface,
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i.e. for the connection between convection above and
conduction below this surface
-7 = kavT
o dy

The limiting case of a wall with zero thickness,
J =0, is the same as Pohlhausen’s [4] problem for
heat transfer from an isothermal flat plate to a lami-
nar boundary layer. The problem constructed here
between equations (21) and (25) is a generalization to
a wall with arbitrary thickness. In search of the opti-
mal wall thickness function that minimizes the overall
heat transfer rate per unit length ¢, we were unable
to carry out the variational calculus using equations
(21)-(25) in place of equation (9). Instead, we assumed
a wall thickness shape that agrees qualitatively with
the shape illustrated in Fig. 3

ky (26)

aty=0.

2= 14b(-0)
and then conducted a search for the minimum ¢’. In
equation (27), b is a dimensionless wall taper par-
ameter so that the thickness 6(¢) decreases linearly
from (1+5/2) at the leading edge, to (1—5/2) at
x = L. Substituted in the J definition (25}, the tapered
shape (27) yields

@7

14+b(—£)
J= JT;—- (28)
in which J is a dimensionless constant
. k&
= — — 12
T= o pRel 9)

The J constant accounts for the fixed length and
material inventory of the wall (L, §), as a substitute
for the constraint of equation (3) used in the first part
of this study.

The total heat transfer rate

Lofor
= k{~— d
e L (ay)y:o x

= kAT Re}/? J ! (@) gV dg
0 aﬂ n=0

was determined numericaily, by solving equations
(21)-(24) for a fixed pair (Pr,J). To start with, the
Blasius function f{(#) was determined based on the
one-time shooting method (Goldstein [5], Rosenhead
[6], Van Dyke [7]; see also Bejan [3], pp. 61-62). Equa-
tion (21) was solved next by the centred finite differ-
ence method with second order accuracy. The uniform
step An = 0.01 was chosen based on the information
presented in Fig. 6, in which the local Nusselt number

hx  x [OT
N“x‘?é‘ﬁ(‘é‘;),zo

was compared with Pohlhausen’s asymptote for the
Pr>» 1 limit, Nu, = 0.332 Pr'/® Re!’*. Figure 6 shows

(30)

GH
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FiG. 6. The effect of grid size on the accuracy of the numerical
solution {J = ().

that the Ap = 0.01 curve cannot be distinguished from
the An = 0.001 curve, i.e. that the Ay = 0.01 grid is
already fine enough.

The heat transfer results are reported in relative
terms in Figs. 7 and 8. On the ordinate, the numerator

110
q!
22 1051
q Pr=1
T=1
1.00 \
0 1 2

b

FiG. 7. The effect of the taper parameter b on the heat transfer
rate through a Jaminar boundary layer adjacent to a wall of
variable thickness, equation (27).

FiG. 8. The effect of the physical constraint parameter J on
the total heat transfer rate through a laminar boundary layer
adjacent to a wall of variable thickness, equation (27).



1678

Table 2. The location of the maximum of the ratio ¢l/¢
reported in Fig. 8 (Pr = 1)

b J, max (q:;i;q ;nu\)
0.5 0.88 1.028
1.0 0.76 1.050
L5 0.58 1.068
2.0 0.50 1.083

¢, represents the total heat transfer rate {per unit
length) when the wall thickness is constant (6 = § or
& = 0). The denominator g is the heat transfer rate
(per unit length) through the wall with variable thick-
ness, 0 < b < 2. Note that when d = 2 the wall thick-
ness is zero at the trailing edge (x = L).

Figure 7 shows that the ratio g./g" increases steadily
as the taper parameter b increases. This finding con-
firms the trend discovered in Fig. 2 (the solid lines),
in which the taper becomes more pronounced as Bi
decreases. The magnitude of the ¢ /¢ ratio is com-
parable with the values plotted in Fig. 2.

The effect of changing the physical constraint par-
ameter J is illustrated in Fig. 8. We see here that when
the taper is fixed (for example, triangular wall profile,
b = 2) the insulation effect reaches a maximum at a
certain JJ value of order 1. The numerical details of
the maxima of Fig. 8 are listed in Table 2. At the
maximum (where J of equation (29) is a certain con-
stant, J,,.), the average wall thickness § is pro-
portional to L2,

The actual heat transfer rate ¢’ can be estimated by
combining the relative information of Figs. 7 and 8
with the ¢, data plotted in Fig. 9. The latter is the final
chart for the total heat transfer rate through a wall of
constant thickness in contact with a forced convection
laminar boundary layer. The chart shows how the .J
constant differentiates between situations in which the
overall thermal resistance is dominated by the wall
(J > 1), and situations where the boundary layer has
the greater of the two thermal resistances (J <« 1),

0.001 y g T
0.01 0.1 1 10 100

FiG. 9. The total heat transfer rate through a wall of constant
thickness, lined by a forced convection laminar boundary
layer.

J. S Lim et ol

By using equation (29) and the classical Pohlhausen
solution, it is easy to verify that the asymptotes of
each of the curves plotted in Fig. 9 are

q. ! if ] 1
k LAT/S 0664 Pr'’J if J« 1 and Pr>0.5.
(32)
CONCLUSIONS

In this paper we analyzed the conjugate heat trans-
fer through a variable-thickness wall lined by a con-
vective boundary layer. In the first part, the analysis
was simplified by the assumption that the x-depen-
dence of the wall-fluid heat transfer coefficient is
known. Variational calculus showed that the total
heat transfer rate is minimized when the wall thickness
decreases in an optimal manner in the direction of
flow.

In the second part of the paper, the complete prob-
lem of laminar boundary layer convection coupled
with wall conduction was solved numerically. It was
assumed that the wall thickness varies linearly with
x: however, the taper of the wall profile (b) could
change. The heat transfer rate decreased at larger
values of b, 1.€. 3s more of the wall material was shifted
toward the leading edge. This conclusion agreed quali-
tatively with the one reached via variational calculus.

Finally, with reference to Fig. 2 it Is important
to recognize that the range Bi < | corresponds to a
wall with an internal resistance smaller than that of
the boundary layer. The figure showed that at the
opposite end (Bi > 1) the usc of a variable-thickness
wall does not result in a significant reduction in the
total heat transfer rate. In other words, when the wall
internal resistance dominates the overall resistance
from 7,+AT to T, the constant-thickness wall is
practically as good as the wall with optimal thickness
profile.
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EPAISSEUR OPTIMALE D’UNE PAROI AVEC CONVECTION SUR UNE FACE

Résumé—On considére le transfert thermique conjugué a travers une paroi avec épaisseur non uniforme
¢t une condition limite sur une face. Dans une premiere partie, un calcul variationnel montre que le transfert
thermique total est minimisé quand I’épaisseur de la paroi décroit d'une fagon optimale dans la direction
de I'écoulement. Les réductions du transfert total de chaleur sont significatives lorsque le nombre de Biot
est inférieur & 1. Dans la seconde partie de I’étude, le probléme complet d’une couche limite de convection
forcée laminaire couplée & la conduction 4 travers une paroi & épaisseur variable est résolu numériquement.
On rapporte graphiquement des moyens de calcul du flux de transfert total thermique. On trouve aussi
que ce flux décroit quand le profil de la paroi est tel que I'épaisseur diminue dans la direction de I"écoulement.

DIE OPTIMALE DICKE EINER WAND MIT EINSEITIGER KONVEKTION

Zusammenfassung—Die vorliegende Arbeit befaBt sich mit dem konjugierten Warmetransport durch eine
Wand ungleichférmiger Dicke und einseitiger Grenzschicht. Im ersten Teil zeigt eine Variationsrechnung,
daB der Wirmedurchgang durch Wahl einer abnehmenden Wanddicke in Strémungsrichtung auf optimale
Weise minimiert wird. Die Verringerung des Wirmedurchgangs wird fiir Biot-Zahlen kleiner als 1 si-
gnifikant. Im zweiten Teil der Untersuchung wird das vollstindige Problem einer laminaren Grenzschicht
bei erzwungener Konvektion in Verbindung mit der Wérmeleitung durch die Wand variabler Dicke
numerisch gelost. Es folgt eine grafische Darstellung des Verfahrens zur Berechnung des Wirmedurchgangs.
Es zeigt sich wieder, daBl der Wirmedurchgang fiir den Fall eines sich verjilngenden Wandprofils abnimmt,
so dafl die Wanddicke in Strdmungsrichtung abnimmt.

ONTHUMAJIbHAS TOJHMHA CTEHKH [P HAJIMYHMM KOHBEKIMH C OJJHON
CTOPOHBI

Amsoramms—VccnenyeTcs CONpAXEHHBIH TEIUIONEPEHOC B CiIyYae CTEHKH HEONHOPOIHOH TOJMLMHBI C
NOrpaHAYHBEIM CJoeM Ha OfHOH cTopoHe. Ilposenennpie B mepBo#f wacTH paboThl BapHALHOHHEBIC
pacueTsl NOKa3biBaIOT, YTO Pe3y/IbTHPYIOLIAA CKOPOCTh TEILIONEPEHOCA MEHHMH3HPYETCH DA ONTHMA-
JIBHOM YMCHBUIEHHH TOJUIMHBI CTCHKM B HanpapieHMH TedcHHs. CHHXKEHHME CKOPOCTH TEMIOIEepeHoca
SABNACTCA CYLIECTBEHHBIM, KOTZia 3Ha4eHHe ynciia Buo MeHsuie 1. Bo BTopo#i wacTi McenenoBaHus quc-
JICHHO peIacTcs CopMeCcTHas 3ajavya NOrpaHHMHoOro ¢J1os opu J!aMEHapHOﬁ Buﬂyxcneuﬂoﬁ KOHBCKIIMHA H
TEILIONPOBONHOCTH Hepe3 CTEHKY nepemMennoif Toymumnel. I'paduueckd NpeACTaBICHN METORB pacyeTa
pesyapTHpylomelf ckopocty Temioneperoca. Halineno, ¥To OHa cHEXaeTca B ciydae KoHycoobpasgoro
npodrs CTCHKH, KOT/Aa TOMIINHE CTCHKH YMCHBIUAETCA B HANDABICHHY TCYCHHS.
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